5. Homework Assignments **Dynamical Systems II** Bernold Fiedler, Hannes Stuke http://dynamics.mi.fu-berlin.de/lectures/ due date: Thursday, November 20, 2014

Problem 1: Consider the parallel flow $\dot{x} = \alpha > 0$, $\dot{y} = \beta$ with irrational slope β/α on the standard 2-torus. Any line with rational (or infinite) slope q/p defines a global Poincaré section. Determine the rotation number of the Poincaré map.

Hint: Consider co-prime integers p and q and use pp' + qq' = 1 for suitable integers p' and q'.

Problem 2: Consider the general pendulum equation

$$\ddot{x} + \nabla V(x) = 0, \qquad x \in \mathbb{R}^N$$

with smooth potential $V : \mathbb{R}^N \to \mathbb{R}$. Let $x = \dot{x} = 0$ be a hyperbolic equilibrium.

Consider the Hamiltonian $H(x, \dot{x}) = \frac{1}{2} ||\dot{x}||^2 + V(x)$. Prove or disprove: Locally, the level set of the equilibrium is the union of its stable and unstable manifolds, i.e.

 $W_{\rm loc}^{\rm u}(0,0) \cup W_{\rm loc}^{\rm s}(0,0) = \{(x,\dot{x}); H(x,\dot{x}) = H(0,0)\}_{\rm loc}$

- (i) for one degree of freedom, N = 1;
- (ii) for more degrees of freedom, N > 1.

Problem 3: A real number x is a *Diophantine number* if for every $\epsilon > 0$ there exists $c_{\epsilon} > 0$ such that $|x - \frac{p}{q}| \ge c_{\epsilon}/|q|^{2+\epsilon}$ for every rational number p/q. A subset of \mathbb{R} is called *generic* if it contains a countable intersection of sets, each of which is open and dense.

- (i) Show that the set of Diophantine numbers in [0, 1] has full Lebesgue measure 1.
- (ii) Show that the set of non-Diophantine numbers is generic.

Problem 4: Consider the Fibonacci-Iteration

$$x_{n+1} = x_n + x_{n-1} \pmod{1}$$

on the 2-torus $(x_n, x_{n-1}) \in (\mathbb{R}/\mathbb{Z})^2$, i.e., consider only the noninteger fractional part of the iteration. Is it well defined? Calculate stable and unstable manifolds of the fixed point (0,0) under the iteration Ψ^n . Are they dense on the 2-torus? Are the homoclinic orbits of (0,0) dense?